SUMMARY REPORT

GAMMA SPECTRAL DATA FOR SHIELDING AND HEATING CALCULATIONS

by

J. Celnik and D. Spielberg

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

November 30, 1965

Contract NAS 3-6200 (UNC Project 2326)

Technical Management
NASA Lewis Research Center
Cleveland, Ohio
Nuclear Reactor Division
Walter A. Paulson

UNITED NUCLEAR CORPORATION
Research and Engineering Center
Elmsford, New York

GAMMA SPECTRAL DATA FOR SHIELDING AND HEATING CALCULATIONS

by

J. Celnik and D. Spielberg

ABSTRACT

16568

Spectra of gamma rays following neutron absorption and inelastic-scattering events in H, Be, C, O, Al, Cr; Fe, Ni, Zr, natural W and the W isotopes, U²³⁵ and U²³⁸ are tabulated. The gamma thermal capture spectra for Cd and Sm are presented. A detailed study of the prompt and delayed fission gammas (both intensities and time variations) is also given. Descriptions are given of the sources of information and the calculations performed. In addition, an evaluation of the reliability of the data is given.

TABLE OF CONTENTS

1.	SUMMARY	1
2.	GAMMA SPECTRAL DATA	3
	2.1 Absorption and Inelastic Gamma Spectra	3
		3
	2.1.2 General Comments on the Inelastic Spectra	5
	2.2 Discussion of the References Used and Calculations	
	Performed in Preparing the Spectral Information for	
		6
		6
		6
		6
	• • • • • • • • • • • • • • • • • • • •	7
		7
		7
		8
		9
		9
		9
		10
		1
	2.2.13 Uranium-235 and Uranium-238 - Nonfission	
		l 2
	2.2.14 Uranium-235 Energy Distribution of Gamma	
		۱7
	2.2.15 Uranium-238 Energy Distribution of Gamma	
		18
	Tours I out of the terminal of	
3.	CONCLUSIONS	56
4	DEFERENCES	59

TABLES

1.	Hydrogen - Number of Gamma Rays Emitted per Absorption	19
2.	Beryllium - Number of Gamma Rays Emitted per Absorption	19
3.	Beryllium - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	20
4.	Carbon - Number of Gamma Rays Emitted per Capture	21
5.	Carbon - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	22
6.	Oxygen - Number of Gamma Rays Emitted per Absorption	23
7.	Oxygen - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	25
8.	Aluminum - Number of Gamma Rays Emitted per Capture	27
9.	Aluminum - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	29
10.	Chromium - Number of Gamma Rays Emitted per Capture	31
11.	Chromium - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	32
12.	Iron – Number of Gamma Rays Emitted per Capture	34
13.	Iron – Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	35
14.	Nickel - Number of Gamma Rays Emitted per Absorption	37
15.	Nickel - Number of Gamma Rays Emitted per Neutron-	
	Producing Reaction	38
16.	Zirconium - Number of Gamma Rays Emitted per Capture	
	and per Neutron-Producing Reaction	3 9
17.		40
18.		40
19.		
	Capture	41
20.	Natural Tungsten - Number of Gamma Rays Emitted per	
	Neutron-Producing Reaction	42
21.		43
22.		43
23.	· · · · · · · · · · · · · · · · · · ·	44
24.	·	44
25.	Uranium-235 - Number of Nonfission Gamma Rays Emitted	
	per Absorption	45
26.	Uranium-238 - Number of Nonfission Gamma Rays Emitted	
	per Absorption	45
27.		46
2 8.	<u>. •</u> .	
	\mathbf{U}^{235} Fission	47

4J.	Gamma Energy Release, 0 to 1 become after 1 ission	
30.	Photons per Second per Fission as a Function of Energy	
	Group and Time after Fission	49
31.	Integrated Gamma Output, Mev/fission, in 12 Groups and	
	3 Time Intervals from 1.0 Second to Infinity	51
32.	Uranium-235 — Number of Gamma Rays Emitted per	
	Neutron-Producing Reaction	52
33.	Uranium-238 — Number of Gamma Rays Emitted per	
	Neutron-Producing Reaction	54
	FIGURE	
1.	Gamma Energy Release Rate as Function of Time after	
	Fission of U^{235}	. 15

1. SUMMARY

The United Nuclear Corporation is presently modifying its UNC-SAM Monte Carlo radiation transport system of programs* for use in the tungsten nuclear rocket program. The modified system and its main tracking routine will be called ATHENA (Attenuation, Tracking, and Heating for NASA). In association with this program, gamma heating studies in the core are being performed for which gamma spectral data are necessary. Therefore, a detailed study was undertaken to determine the gamma spectra and intensities following neutron absorption and inelastic-scattering events in the elements and nuclides of interest – H, Be, C, O, Al, Cr, Fe, Ni, Zr, natural W and the separate W isotopes, U²³⁵, and U²³⁸. The capture spectra for the strongly capturing elements Cd and Sm are given. Finally, a detailed study of the prompt and delayed fission gammas was made providing a detailed description of the post-fission sources from 0 to 10 hr.

The thermal capture gamma spectra are generally well-known. The energy and intensity of the discrete spectra are represented by their "best" experimental values. Continuous gamma spectra are represented by a sufficient number of discrete gamma energies to represent the spectrum adequately. Wherever discrete gamma lines of relatively high intensity are imposed on a continuum, the gammas of energy close to the discrete line have been lumped together with the discrete gamma. This procedure was also followed for the inelastic gamma spectra.

^{*}For a description of the UNC-SAM code see Reference 1.

It was assumed that the capture spectrum is independent of the neutron energy at which the capture occurs. This assumption is generally adequate for most problems. The assumption that no gammas follow the charged-particle reactions (except for oxygen) will tend to cause an underestimate of the total heating.

The gamma spectra following inelastic scattering, for neutron energies below $^{\sim}4$ MeV, are believed to be adequate, since they are based on experimental level-excitation cross sections. In the intermediate neutron energy range (4 to 8 MeV) the inelastic gamma spectra, based in part on statistical theory, are not uniformly reliable. For neutron energies above 8 MeV, the spectra are based on statistical theory which includes (n,2n) and (n,3n) processes. As the neutron energy increases above 8 MeV, the validity of the parameters used in the theory becomes increasingly questionable. In general, the shape of the spectra is given more reliably than the absolute values. For the problems in which it is planned to use the data presented in this report the inadequacy is not important because neutrons having energies > 8 MeV constitute only 1/2 of 1% of the fission source.

Inasmuch as the tungsten being used in the reactor may be enriched in one or more isotopes, additional calculations were made to provide capture gamma spectra for the isotopes W^{182} , W^{183} , W^{184} , and W^{186} .

2. GAMMA SPECTRAL DATA

2.1 ABSORPTION AND INELASTIC GAMMA SPECTRA

2.1.1 General Comments on the Absorption Spectra

This section describes a study made of the gamma spectra following absorption and inelastic-scatter events in elements of interest in the tungsten nuclear rocket program. The data are to be used in the modified United Nuclear Monte Carlo three-dimensional transport code to determine, among other quantities, gamma heating in and near the core.

The relevant data are presented in Tables 1 through 26, 32, and 33. Generally, there are two tables per element (each element being identified in the programs by a 5-digit integer). One table gives the absorption, and the other gives the inelastic spectrum. Each table consists of a matrix specifying, for a given neutron energy bin, the number of gammas produced per event (absorption or inelastic) for each of several discrete gamma energies.* The neutron energies given represent the upper energy of the bin. The spectra are assumed to be constant within each neutron energy group.

The absorption spectrum for each element (except for Cd and Sm) includes both capture and charged-particle events, the spectrum of each being weighted by its

^{*}For several of the elements the gamma energies were combined so as to condense the tables; the complete, more detailed spectra are available in punched-card format for use in the ATHENA system.

average cross section in the given neutron energy group. If P_c and P_{cp} are the capture and charged-particle number spectra (number of photons produced) with corresponding average cross sections σ_c and σ_{cp} , then the absorption number spectrum P_a for that neutron energy bin E_n is

$$\mathbf{P}_{\mathbf{a}}(\mathbf{E}_{\mathbf{n}}, \mathbf{E}_{\gamma}) = \frac{\sigma_{\mathbf{c}}(\mathbf{E}_{\mathbf{n}})\mathbf{P}_{\mathbf{c}}(\mathbf{E}_{\gamma}) + \sigma_{\mathbf{cp}}(\mathbf{E}_{\mathbf{n}})\mathbf{P}_{\mathbf{cp}}(\mathbf{E}_{\mathbf{n}}, \mathbf{E}_{\gamma})}{\sigma_{\mathbf{c}}(\mathbf{E}_{\mathbf{n}}) + \sigma_{\mathbf{cp}}(\mathbf{E}_{\mathbf{n}})}$$
(1)

For most of the elements (the exception being oxygen) it was assumed that $P_{cp}=0$, i.e., no gammas are created following a charged-particle reaction. In general, charged-particle reactions produce low-energy (<1 Mev) gammas. Thus they can be neglected in shielding problems where the desired quantity is the gamma-ray dose at the outside of the shield. For problems in which one desires the total local gamma heating, neglect of gammas from charged-particle reactions will underestimate the total heating. A saving factor is that, in general, charged-particle reactions are important only at high (several Mev) neutron energies. Hence for a fission source where neutrons with E > 6 Mev represent only 2.5% of the source, the fraction becoming 0.5% for E > 8 Mev, the underestimate of the heating will be small. Moreover, at high neutron energies, in addition to the charged-particle reactions, inelastic-scattering events (with $\sigma_{\rm inel} \stackrel{>}{\scriptstyle \sim} \sigma_{\rm cp}$ generally) yield gamma rays, the latter being of higher energies than those from the charged-particle reactions.

Eq. 1 implies that the capture spectrum is independent of the neutron energy at which the capture occurs. This is not generally valid for resonance regions in which different resonances may excite different levels. However, for a continuous neutron energy distribution the composite thermal spectrum is adequate. The possible variation of the capture spectrum with neutron energy, and its consequences for any given element, could be further investigated. The thermal capture spectrum represents high-energy (several Mev) captures even less adequately than in the resonance region. This does not represent any difficulty,

however, as the capture cross section is generally very small in the Mev range.

Moreover, for a fission spectrum, there are relatively few high-energy neutrons.

2.1.2 General Comments on the Inelastic Spectra

The inelastic gamma spectrum for each element includes the (n,2n) and (n,3n) processes in addition to the purely inelastic $(n,n'\gamma)$ reaction. For neutron energies below ~4 MeV, the values tabulated are based on experimental level-excitation cross sections. In some cases these were supplemented by Hauser-Feshbach calculations. In the intermediate neutron energy range (4 to 8 MeV) the spectra are based on statistical-model calculations, supplemented by some meager experimental data. The data of Perkin³ for Al, Fe, Ni, and W, though complete, are of dubious quality. He occasionally gives production cross sections for gammas of energies which are not physically possible for the particular element and neutron energy considered. Perkin also normalizes the cross section separately at each neutron energy for which data are presented. This introduces spurious structure in the gamma spectra, which we have attempted to remove.

As the neutron energy increases beyond 8 Mev, there is an increasing paucity of experimental data (except for some data at 14 Mev). To compound the difficulty, the validity of the parameters used in the statistical theory [which includes (n,2n) and (n,3n) processes] becomes increasingly questionable as the neutron energy extends further away from the energy range at which experimental data exist. In general, the spectral shapes are given more reliably than the absolute values. However, since the fission spectrum has very few neutrons above 8 Mev, inaccuracies in the associated gamma spectra are not too important.

2.2 DISCUSSION OF THE REFERENCES USED AND CALCULATIONS PER-FORMED IN PREPARING THE SPECTRAL INFORMATION FOR EACH ELEMENT

2.2.1 Hydrogen

The gamma spectrum following a neutron interaction with hydrogen is a model of simplicity. There are no inelastic scatterings, and an absorption at any energy produces a single 2.23-Mev gamma.⁴ The gamma spectrum is shown in Table 1.

2.2.2 Beryllium

The gamma spectrum following a neutron absorption in beryllium is based mainly on the work of Draper and Bostrom.^{5,6} The spectrum is given in Table 2. There is no $(n,n'\gamma)$ reaction in Be at the neutron energies of interest (≤ 18.0 MeV). However, the (n,2n) reaction does lead to the creation of a 2.43-MeV gamma. The number of such gammas created per "inelastic" event as a function of neutron energy is given in Table 3. The data are based on the work of A. Krumbein.⁷

2.2.3 Carbon

E. Troubetzkoy and H. Goldstein⁴ give the spectrum of gamma rays following neutron capture in carbon. The spectrum was assumed constant for incident neutron energies below 223 ev, above which the (n,γ) cross section becomes zero. Above 223 ev no gammas are produced per neutron absorption as the gammas following the charged-particle reactions are neglected. The spectrum is shown in Table 4.

The gamma spectrum following inelastic scattering in carbon was based on statistical theory for neutron energies above 10 Mev. For $E_n \le 10$ Mev, experimental level-excitation cross sections were used. It was assumed that the 7.66-Mev level does not decay by gamma emission.⁸ The data are presented in Table 5.

2.2.4 Oxygen

There are no neutron capture events in oxygen. The absorption spectrum given in Table 6 represents the production of the 3.5-Mev gamma following the (n,α) reaction. The gamma spectrum following inelastic scattering was based on the experimental level-excitation cross sections measured by the Rice group and quoted in BNL-325. These were supplemented by statistical model calculations. The details are given in Reference 10. The gamma spectrum, as a function of neutron energy, is given in Table 7.

2.2.5 Aluminum

The capture spectrum was taken from J. E. Draper and C. O. Bostrom⁶ and the compilation of E. Troubetzkoy and H. Goldstein.⁴ The gamma spectrum emitted per inelastic-scattering event in aluminum was deduced as follows. The work of Towle and Gilboy¹¹ and the compilations found in References 12 and 13 were supplemented by Hauser-Feshbach calculations to determine the excitation cross sections for the six lowest levels for incident neutron energies below 4.0 Mev. These agreed remarkably well (to within 15%) with the calculations of M. Leimdörfer (personal communication).

For neutron energies above 4 MeV, statistical-model calculations were used. These agreed well with the discrete-level data of Reference 11 and the Hauser-Feshbach calculations near 4 MeV. The calculations were supplemented by the experimental data of Perkin³ for neutron energies to 8.5 MeV and by the data of Thompson and Engesser at $E_n = 14$ MeV (Reference 14).

The capture and inelastic gamma spectra are tabulated in Tables 8 and 9.

2.2.6 Chromium

The spectral intensities of gamma rays resulting from neutron capture in chromium were taken from the compilation of Troubetzkoy and Goldstein.⁴ The range of

gamma energies from 0 to 9.72 Mev has been divided into seven groups. Integrated intensities are given for each group. Since the charged-particle reactions [which far outweigh the (n,γ) reaction for $E_n \ge 2.5$ Mev] are assumed to be accompanied by negligible gamma emission, the absorption gamma spectrum equals the capture spectrum for neutron energies up to 2.5 Mev. Thereafter it drops sharply to zero.

The gamma spectra following inelastic scattering in chromium were based on the level-excitation cross sections of Van Patter, ¹⁵ for incident neutron energies below 3 Mev. For incident neutron energies above 3 Mev the gamma emission was calculated from statistical theory.

The capture and inelastic gamma spectra following neutron interactions in chromium are given in Tables 10 and 11.

2.2.7 Iron

The absorption gamma spectrum for iron was taken to be the capture spectrum, as given by Troubetzkoy and Goldstein,⁴ for incident neutron energies below 4.5 Mev. For $E_n > 4.5$ Mev the very small (n,γ) cross section is negligible compared with the (n,p) and (n,α) reactions. It is assumed that the charged-particle reactions produce no gammas.

The production of gamma rays by inelastic neutron scattering from iron, for incident neutron energies below 4 MeV, were taken from the experimental data of Montague and Paul. ¹⁶ For neutron energies above 4 MeV, the data of Perkin³ which extend to $E_n=8.5$ MeV, and the data of Caldwell¹⁷ for $E_n=14$ MeV were used.

The capture and inelastic gamma spectra are tabulated in Tables 12 and 13.

2.2.8 Nickel

The absorption gamma spectrum in nickel was assumed to be equal to the capture spectrum, which was taken from the compilation of Troubetzkoy and Goldstein.⁴ The spectrum of gamma rays following inelastic scattering, for neutron energies below 4 MeV, was based mainly on the discrete-level excitation cross sections of Broder et al.,¹⁸ supplemented by the work of Day¹⁹ and Cranberg and Levin.²⁰ For neutron energies between 4 and 8.5 MeV the data of Perkin³ were used. Above 8.5 MeV, the spectra were calculated by statistical theory with parameters adjusted to fit Perkin's data at $E_n = 8.5$ MeV.

The spectra are tabulated in Tables 14 and 15.

2.2.9 Zirconium

The capture gamma spectrum is taken from the compilation of Troubetzkoy and Goldstein⁴ for gamma energies above 3 Mev. For $E_{\gamma} < 3$ Mev the capture spectrum for zirconium was assumed to approximate that for molybdenum (which has a similar spectrum above $E_{\gamma} = 3$ Mev). The values were taken from Reference 4. The gamma spectrum following inelastic scattering events in zirconium was obtained from the data of M. Fleishman, ²¹ using the total inelastic scattering cross sections of J. Ray (UNC Phys./Math Memo No. 1679, Dec. 1960). The spectra are tabulated in Tables 16a and 16b.

2.2.10 Cadmium

The capture gamma spectrum given in Table 17 is based on the compilation of Troubetzkoy and Goldstein⁴ and on the work of Smither.²² Nothing is presented in this report on the inelastic gamma spectrum as cadmium will be present in relatively low concentrations for its effect as a strongly capturing medium.

2.2.11 Samarium

The capture spectrum given in Table 18 is from Troubetzkoy and Goldstein⁴ and Groshev.²³ No inelastic gamma spectrum is given.

2.2.12 Tungsten

A. Natural Tungsten

The gamma spectrum following thermal neutron capture is based on the experimental data found in References 24 to 27. The spectrum, assumed to be independent of neutron energy, is given in Table 19.

For low neutron incident energies ($E_n < 2$ MeV), the spectrum of gamma rays from inelastic scattering is based mainly on the discrete level-exitation cross sections of Smith. At higher neutron energies the data from Perkin were supplemented by statistical-model calculations. The values obtained are presented in Table 20.

B. The Tungsten Isotopes $-W^{182}$, W^{183} , W^{184} , and W^{186}

Additional calculations have been made to provide capture gamma spectra for the separated tungsten isotopes W¹⁸², W¹⁸³, W¹⁸⁴, and W¹⁸⁶. These spectra were obtained from that for natural tungsten, as described in Troubetzkoy and Goldstein⁴ in conjunction with data on binding energies and on certain gamma lines assignable to particular isotopes, as given by Treado and Chagnon.²⁹

Briefly, the procedure was as follows. The capture gammas for natural tungsten are represented by a 12-group spectrum $(n_i E_i)$, $i = 1, 2, \ldots, 12$; i.e., per absorption in natural tungsten there are emitted n_1 gammas of energy E_1 , etc. A "background" spectrum was constructed, assumed common to all of the isotopes, by subtracting (with proper weighting) contributions attributable to particular isotopes. This background is

$$n_{i}^{(B)} = n_{i} - \sum_{\substack{j=182,183\\184.186}} a_{j}n_{j,i}$$
 (2)

where $n_{j,i}$ is the number of gammas emitted, in the energy range containing E_i , by isotope j, and a_j is the abundance of isotope j in natural tungsten, multiplied by its thermal capture cross section and divided by the sum of the products of abundances and cross sections, i.e., a_j represents the probability that a given capture in natural tungsten is a capture in the isotope j.

Following this, the background spectrum was renormalized separately for each isotope j, yielding the constants c_j , so as to set the total gamma emission per capture in isotope j equal to the binding energy U_j :

$$C_{j}\sum_{i}n_{i}^{(B)}E_{i}+\sum_{i}n_{j,i}E'_{j,i}=U_{j}$$
(3)

where $E'_{j,i}$ is the actual energy of a line emitted by isotope j in the range represented by E_i , and $U_j = 6.10$, 7.48, 5.86, 5.34 for j = 182, 183, 184, 186, as reported by Treado and Chagnon. Finally, using the C_j found from Eq. 3, a 12-group capture gamma spectrum was computed for each isotope, following the formula

$$N_{j,i} = C_j n_i^{(B)} + \sum_k n_{j,k} \left(\frac{E_{i,k}^t}{E_i} \right),$$
 (4)

the summation being over lines k in the ith energy bin of the spectrum. The last factor ensures the energy balance satisfied by the spectra

$$\sum_{i=1}^{12} N_{j,i} E_i = U_j$$
 (5)

The capture spectra are presented in Tables 21 through 24.

2.2.13 Uranium-235 and Uranium-238 - Nonfission Gammas

In the proposed Monte Carlo calculations, the fission-related gammas will be generated from a prescribed power pattern and operating history, without regard to the histories of individual neutrons after fission. On the other hand, neutron absorptions encountered during the neutron Monte Carlo are recorded on an interaction tape which is later processed by the GASP program to generate a source for the secondary gamma problem. Since no distinction is made in this recording between nonfission and fission captures, the element-dependent gamma-production input to GASP should define the nonfission gammas produced per absorption (i.e., per capture-or-fission), since the fission gammas are treated in a separate (primary gamma) calculation.

These nonfission gammas per absorption were computed as follows. Let $n_{i,j}$ be the number of gammas of energy i produced as a result of the nonfission capture of a neutron in energy bin j. Then

$$N_{i,j} = \frac{\sigma_{\gamma}(E_i)}{\sigma_{\gamma}(E_j) + \sigma_f(E_j)} \cdot n_{i,j}$$

(where σ_{γ} and σ_{f} are the capture and fission cross sections) represents the number of nonfission gammas of energy i produced per fission or nonfission capture of a neutron in energy bin j. In the calculations for U^{235} the $n_{i,j}$ were assumed to be independent of j (the neutron energy). The capture spectrum (for U^{235}) was taken to be the same as that of the prompt fission gammas (to be discussed later). Their intensity corresponds to a total of 6.429 Mev/capture (see References 30, 31). To generate the $N_{i,j}$ for U^{235} the following average cross section values were used (data from Reference 8).

AVERAGE CROSS SECTIONS $-\sigma_{\gamma}/(\sigma_{\gamma}+\sigma_{f})$ vs ENERGY FOR U²³⁵

Neutron Bin	Lower Energy	$\frac{1}{2}$
Dill	Limit, Mev	$\frac{\sigma_{\gamma}/\left(\sigma_{\gamma}+\sigma_{\mathbf{f}}\right)}{\sigma_{\gamma}}$
1	3.7 (-8)	0.15
2	1.0 (-7)	0.17
3	1.0 (-6)	0.25
4	4.0 (-6)	0.60
5	7.0 (-6)	0.30
6	1.0 (-5)	0.34
7	1.5 (-2)	0.28
8	1.0 (-1)	0.15
9	1.0 (+0)	0.035
10	4.0 (+0)	0.003
11	10.0 (+0)	0.0005
	1.81 (+1)	

For $\mathbf{U^{235}}$ the $N_{i,j}$ (number of nonfission gammas per absorption) are given in Table 25.

The thermal capture gamma spectrum, the $n_{i,j}$ for U^{238} is based on the work of Campion (see References 32 and 8). The spectrum was assumed to be independent of neutron energy; the total emission is 6.37 Mev/capture. Table 26, giving the number of nonfission gammas per absorption in U^{238} , is based on the following average cross section values (data from Reference 8).

AVERAGE CROSS SECTIONS — $\sigma_{\gamma}/(\sigma_{\gamma} + \sigma_{f})$ vs ENERGY FOR U²³⁸

Neutron Bin	Lower Energy Limit, Mev	$\sigma_{\gamma}/(\sigma_{\gamma}+\sigma_{\mathbf{f}})$
1	3.7 (-8)	1.00
2	1.0 (+0)	0.75
3	1.3 (+0)	0.35
4	1.5 (+0)	0.10
5	1.8 (+0)	0.08
6	2.3 (+0)	0.04
7	4.0 (+0)	0.01
8	7.0 (+0) 2.0 (+1)	0.001

A. Prompt and Delayed Gammas from Fission in U²³⁵

Presented below are the spectra, intensities, and time variations which have been compiled and calculated. This is followed by some discussion of the sources of information, and recommendations for future work.

B. Results

Recommended Values for the Gamma Release Rates and Integrals Following Fission of \mathbf{U}^{235}

- 1. The total gamma energy release rate and integral, 0 to 10 seconds, is shown in Table 27 and Fig. 1.
- 2. The spectrum of the prompt (0 to 5.0×10^{-8} second) radiation is shown in Table 28.
- 3. The integral data (gammas released during first 1.0 second after fission) indicated in the last column of Table 27 are summarized in Table 29.

At present the spectrum is assumed to be constant over the entire 1.0 second. Table 28 could be modified to represent the range 0 to 1.0 second by multiplying the entries for Mev/fission and photons/fission by 8.470/7.394 = 1.146.

- 4. Photon release rates, in 12 groups (1.0 second to 10 hours) are shown in Table 30.
- 5. Integrated gamma output, Mev/fission, in 12 energy groups and three time bands from 1.0 second to infinity is shown in Table 31.

C. Discussion: Sources of Data - Calculations

0 to 5×10^{-8} Second

The principal source of data on the spectrum and time dependence of the "prompt" gammas (0 to 5×10^{-8} second) is Maienschein et al., References 33 and 34.

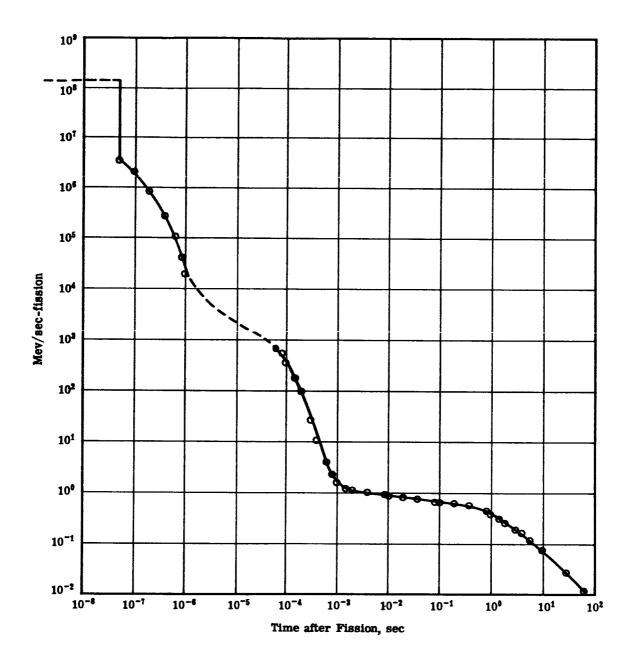


Fig. 1 — Gamma Energy Release Rate as Function of Time after Fission of U^{235}

Fig. 4.1.1 of Reference 32 was integrated to provide gamma sources (for the first 5×10^{-8} second following fission) in each of the 12 gamma groups which are used in the tabulation of delayed gamma intensities, plus one group including the 5.5 to 7.5 Mev contributions. The energy range below 0.3 Mev, not reported in References 33 and 34, has been augmented by 0.24 Mev/fission, following Skliarevskii³⁵ and Roos.³⁶ This led to a value of 7.39 Mev over the range of 0.02 to 7.5 Mev, 0 to 5×10^{-8} second.

5×10^{-8} to 1.0 $\times10^{-6}$ Second

Here (and over the whole first second) the spectrum is assumed to be the same as that for the very prompt radiation. The time dependence from 5×10^{-8} to 10^{-6} second was estimated by combining the four intensity-vs-time curves of Fig. 4.2.2, Reference 34, each weighted by the average energy of the pertinent gammas. Small extrapolations of the 0.70-Mev and 1.30-Mev curves of that figure permitted a calculation of a plausible shape of the intensity-vs-time curve for the energy region of 0.15 to 1.42 Mev. This shape was assumed to describe the time variation of the entire gamma source in this time interval.

For the normalization of this portion of the curve, use was made of Maienschein's experimental result that, from 5×10^{-8} to 10^{-6} , about 5.7% as many counts were observed over a fairly wide range (0.16 to 1.93 MeV) as were observed in the first 5×10^{-8} second for the same energy range. Hence the total energy emission in this time range is taken to be $0.057 \times 7.39 = 0.421$ MeV.

$1.0\times10^{-6}~to~6.0\times10^{-5}~Second$

This range was filled in by graphical interpolation between the earlier and later times. The possible error cannot be too large as the integrated energy release over this range is only about 0.1 Mev.

6.0×10^{-5} to 1.0 Second

The shape of the curve of total energy release rate vs time in this time range was taken to be the same as that given for $E_{\gamma} > 0.51$ Mev in Reference 37, Fig. 9 and Table 1. The normalization from photons/fission-sec to Mev/fission-sec was made by matching the U^{235} portion of that reference at 1.0 second to the absolute intensity (in Mev/fission-sec) implied by the table of intensities which we have given for times > 1.0 second. This normalization appears well-founded since the ratio of Walton's intensities to Zigman and Mackin's is very nearly constant over the range from 1 to 4 seconds.

1.0 Second to 3.64×10^4 Seconds (10.14 Hours)

The data up to 1.74×10^4 seconds are reproduced from the work of Zigman and Mackin³⁸ as reported in Watson.³⁹ The first nine columns (covering 0.02 to 4.0 Mev) were extrapolated graphically from 1.74×10^4 to 3.64×10^4 seconds. The last three columns (covering 4.0 to 5.5 Mev) were extrapolated from 2.75×10^3 or 4.03×10^3 seconds.

3.64×10^4 Seconds to Infinity

The last time bands considered, extending the energy-release computations to 10^8 seconds and infinity, were treated by assuming that the exponents, c, in power fits to the various energy-rate curves, W' = at^{-C} Mev/sec, were the same for $t > 3.64 \times 10^4$ seconds as in the range $1.74 \times 10^4 \le t \le 3.64 \times 10^4$ seconds.

2.2.14 Uranium-235 Energy Distribution of Gamma Rays Following Neutron-Producing Reactions

The gamma-ray spectrum following inelastic-scattering events in U²³⁵ was derived, for low incident neutron energies, from Hauser-Feshbach calculations, taking into account the known discrete levels.⁴⁰ At higher energies, statistical model calculations were performed. The spectra are given in Table 32.

2.2.15 Uranium-238 Energy Distribution of Gamma Rays Following Neutron-Producing Reactions

The gamma-ray spectrum following inelastic scattering for $E_n < 1\,$ Mev was derived from level-excitation measurements. These measurements were extended by Hauser-Feshbach calculations, taking into account competition from fission and capture processes. The neutron penetrabilities were calculated using the nonlocal potential of Perey and Buck. For $E_n > 1\,$ Mev the gamma spectra are based on statistical theory, including (n,n'), (n,2n), and (n,3n) processes. The spectra are presented in Table 33.

TABLE 1 — HYDROGEN – NUMBER OF GAMMA RAYS EMITTED PER ABSORPTION

Energy 0.03 ev	\mathbf{E}_{γ} , Mev
Energy	2.23
0.03 ev	1.0
18.02 Mev	1.0

TABLE 2 — BERYLLIUM – NUMBER OF GAMMA RAYS EMITTED PER ABSORPTION

	$\mathbf{E}_{\mathbf{y}}$, Mev								
E, Mev	.8550	2.5900	3.3650	3.4410	<u>5.9560</u>	6.8070			
2,00000= 01	0	- 0	~ 0	- 0	- U	- 0			
1,00000g=03 1,00000g=09	2400 2400	.2100 .2100	.2800 .2800	.1100 .1100	.0200 .0200	.6500 .6500			

TABLE 3 — BERYLLIUM – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

	\mathbf{E}_{γ} , Mev
E, Mev	2.43
1.80200E 01 1.63028E 01 1.47514E 01 1.33476E 01 1.20774E 01 1.09281E 01 9.88815E 00 8.94717E 00 8.94717E 00 8.09573E 00 7.32532E 00 6.62823E 00	2610 2900 3200 36000 4450 5700 57100 7750
5,99747E 00 5,42673E 00	.9140 .8370
4.91031= 00	, 838 ₀
4.44303E 0U 4.02022E 0U	.820u .7600
3,63765E 00 3,29148E 00	4300 3000
2,97825E 00 2,69484E 00	120u 0
1,000006-10	Q

TABLE 4 — CARBON – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	\mathbf{E}_{γ} , Mev	
$\frac{1.27}{}$	3.68	4.95
.3000	.3000	.7000

TABLE 5 — CARBON – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

						T N	M					
						r_{γ}	Εγ, Mev					
E, Mev	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.438	5.25	6.00	9.00
020nF	. 0000		0.0	00	00	50	40	80	067	•	6	~
1000E		00	1000	5000	0000	000	0012	.0016	. 27	0074	0152	2089
3000E9*	00	00	00	00	00	00	00	덩	4	9	015	50
-55000E	00		00	00	00	00	00	000	8	8	008	4
47500E	00	00	00	000	00	00	00	000	2	0	002	99
40000E	00	00	00	00	00	00	000	00	97	01	*	8
.33000E	0.0	00	00	00	00	00	00	000	77	00	9	5
.27000E	00	00	00	00	00	00	00	00	S.	00	5	80
.21000E		00	00	00	8	00	00	0	20	00	00	9
15000E	3	0.0	00	00	0	00	00	0	70	00	00	0
300060°	.	0	, ,	0	0	00	00	0	7	0	00	00
.04000E	0	0	0	0	5	0	0	0	9	0	0	0
300068.	0	٥	ပ	0	0	0	0	0	17	0	0	00
410005	3	0	0	0	Э	0	0	0	£	၁	0	0
300066	3	0	2	0	9	0	0	0	69	0	0	0
3000 69	0	0	0	0	3	0	0	0	83	0	0	0
. 51000E	ວ	0	၁	•	o	0	0	0	9	0	0	0
3000c.	ŋ	0	0	0	သ	0	0	0	8	0	0	0
300002	၁	c	0	0	3	0	0	0	9	0	0	0
.05000E	3 ·	ဝ	0	0 (3	0 (0 (0	66	o •	-	c
300006	c	0	5	> (.	-	-	-	966	.	o (-
3000g*	.	<u>،</u> د	o	-)	0	0 :	o	00	0 (0 (0
7 W W W W W W W W W W W W W W W W W W W	ت ن	c c	3 C	3) =	- -))	0	5 C	5 C	> C
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>	3	5	•	>	•	•	>	•	•	o	•

TABLE 6 — OXYGEN - NUMBER OF GAMMA RAYS EMITTED PER ABSORPTION

	\mathbf{E}_{γ} , Mev
E, Mev	3.5
2.00000E 01 1.71000E 01	423 ₀ 433 ₀
1.63000E 01 1.55000E 01 1.47500E 01	434 ₀ 431 ₀ 422 ₀
1.40000E 01 1.33000E 01 1.27000E 01	4070 393 ₀ 3990
1.21000E 01 1.15000E 01	356 ₀ 367 ₀ 462 ₀
1.09000E 01 1.04000E 01 9.89000E 00	.497 ₀
9,41000E 00 8,95000E 00 8,51000E 00	.5000 .5000 .4500
8.10000E 00 7.70000E 00 7.33000E 00	.4000 .1000
1.000002-10	ō

TABLE 7 — OXYGEN – NUMBER OF GAMMA

E, Mev	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4
1.810005 01	,0099	.0010	, <u>n</u> g23	.0060	.0093	.0143	,0164	, v 17 8	
1.71000= 01	0101	.0010	.nn23	.0060	0099	0143	.0161	.0173	
1.63000= 01	.0104	.0010	. 0023	.0059	0091	0141	.0158	u166	- 1
1.55000= 01	.0106	.0010	.0022	. 005H	0.89	. n13a	.0152	. 9156	آ و
1,4750UE 01	.0107	0009	.0020	.0057	.0086	0135	.0145	.0146	١
1,40000= 01	0112	.0089	.0019	อดออิ	.0083	0130	.0136	. (134	
1.330002 01	.0116	.0008	0016	.00>2	0078	.0124	.0128	0125	
1.2700QE 01	.0120	•0006	. JO14	.0049	.0073	_ ი12ე	. (123	, ü116	
1,21000g 01	j122	•0005	0010	. U U 45	.0009	.0117	.0116	.0099	•
1.150002 01	.0115	•0003	•0007	• 0042	8097	.0112	0098	9065	•
1.09000= 01	.0113	.0001	0005	.0041	.0001	0094	.0002	0031	• 1
1.04009= 01	0109	.0000	•30u <u>4</u>	.0037	.0048	. 0n64	.0033	0008	
9.890008 00	. ពួក្ខខ្ម	Û	0003	0027	0023	.0034	0008	0	
9.410000 00	9093	O	.0002	.0008	.0006	.0005	0	0	
9,340095 00	0077	U	0	ij	0	Ü	0	Ų	
9.20000= 00	5000	C	Û	U	0	0	Û	0	
9.10000= 00	0074	Ü	Û	Ü	0	ບ	0	U	
8.95000= 00	0064	ũ	0	ü	0	0	Ç	Ü	
8.84gnj≣ oJ	0067	Ü	٥	'1	0	Đ	0	Ü	
8.70000= 00	9065	ũ	Û	IJ	ŋ	G	0	ū	
8.51000= 00	₀₀ 73	Ų	0	Ú	G.	0	C	U	
8.35000E 00	0000	ú	0	υ	0	ΰ	Ü	C	
8.100000 00	0070	U	Ú	ال.	ð	D	0	0	
7.870002 00	0046	u	0	:)	ð	٥	0	ິນ	
7.70000= 00	0049	Ü	ű	ย	ū	Ü	0	Ü	
7.4000UE 00	. គួតូតូ	ú	0	3	Ü	Û	Ü	0	
7.3300uE 0u	0	ij	0	Ü	Ú	0	U	Ú	
6.30000= 00	Ü	ū	0	1)	0	υ	υ	Ü	
6.gngng= gu	Q 2	J.	0	Ü	0	Ü	Ü	Ú	
1,00000=-10	ù	Ü	0	Ü	\boldsymbol{v}	0	U	U	

RAYS EMITTED PER NEUTRON-PRODUCING REACTION

\mathbf{E}_{ν} ,	Mev
----------------------	-----

		MCA									
<u>.75</u>	5.25	5.75	6.25	6.75	7.25	7.75	9.0	11.0	13.0	<u>15.0</u>	17.0
185	0184	.0177	.1548	,1112	1029	.0112	2225	,264 ₀	,1429	. u 66 g	,0191
176	.n172	n 161	1559	,1115	.1031	0089	2227	.2672	.1411	n561	ე ე 65
165	.0158	0145	1577	1127	.1 i 44	10074	2233	2732	.1361	. (1422	ព្រំប្រ
153	.0142	. 1127	1585	1131	1035	.0052	2264	.2797	1260	0230	· ·
139	.0127	.0112	1645	.1163	.0997	1023	2344	.2841	1089	บบ73	υ
126	.0114	8095	1724	1227	0968	0004	2469	2644	.0794	Ų	ί
1115	0096	. 0067	.1803	.1299	.0941	0	2608	2756	, g436	Ü	Û
1098	.nn58	20034	.1927	1401	.0917	0		つんちに	.0162	Ü	Ü
068	์ กอ33	0012	2045	1480	0889	0	282g	2135	9004	Ü	ΰ
032	.0007	0	2487	1630	.4844	r	. Ծ լ 42	. 155 մ	Ù	Ù	0
007	U	نا	3120	1624	.0766	0	.3142	.9834	0	Ĺ	ý.
Ü	Ü	U	43วิต	.1864	0669	0	,2687	, g22r	Ú	0	0
0	0	0	6976	.1306	. 638 n	0	1414	0	0	Ü	U
0	Ü	C	7738	1462	0421	0	0424	Û	ิซ	Ü	Ü
Ù	Ú	Ü	8421	.1242	.0361	0	O	Ü	Ų	U	Ü
Ú	Û	Ú	8705	.0986	_0279	0	Ü	n	ű	G	Ü
Ü	Ü	Ð	.849 _{(i}	.1166	0345	Ü	Ü	ű	G	C	Ü
U	U	0	.8697	.1019	.0284	Û	o	Ü	Ü	Ü	Ú
Ü	Ú	U	8638	.1051	.0319	n	Ü	G	(i	Ū	U
U	Ü	0	.867g	1039	. 1129 11	٥	0	Ú	U	b	Ü
u	U	0	8523	1147	0335	Ū	Ŋ	Đ	0	Ü	Ü
Ü	Ü	Ü	.8788	932	.0280	ŗ	O	ũ	0	Û	U
ü	ΰ	U	, A573	.1087	0340	Ú	U	e	Ú	Ü	U
0	U	(i	9058	. u737	0205	n	Ū	٥	0	U	Ú
Ü	Û	0	.9601	, 9774	11225	ņ	Û	ն	Ú	Ü	Ü
G	Ü	Ü	,987 ₀	0130	0	£.	0	ũ	ΰ	ύ	0
Ü	Û	ı	1.0000	0	ü	Û	Û	6	ú	Ł	U
U	ø	ប	1.0000	Û	Ü	0	e	Ú	O	ü	S S
نا	Ų	U	0	Č	C	C	û	G	Ü	Ü	Ü
U	Q	ü	U	0	ij	Û	0	G	Ú	Ð	Ü

TABLE 8 — ALUMINUM – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

$\underline{\mathbf{E}, \mathbf{Mev}}$	
.20	2,5000
1.5	.9500
1.78	1.0000
2.5	.7000
4.0	.8000
6.0	.2000
7.73	.2500

TABLE 9 — ALUMINUM – NUMBER OF GAMMA R

E, Mev	.75	1.25	1.75	2.25	2.75	3.25	3
1.8020UE 01 1.40000E 01 1.4000UE 01 8.5100UE 00 6.6300UE 00 5.16000E 00 4.0200UE 00 3.1300UE 00 1.4000E 00 1.4000E 00 1.4000E 00 1.4000E 00 1.4000E 00 1.1500UE 00 1.1500UE 00 1.1500UE 00	1000 1200 1300 1000 2000 2200 1700 2900 3100 3600 1,0000	2100 2200 2500 2500 3100 4000 4700 4700 6400	3100 3200 3100 3100 2800 2800 1800 1800	.1600 1700 1800 2700 3700 3300 3300	1100 1000 1300 1300 1400 1300 0	1100 1000 1200 1200 1100 0500 0100	

AYS EMITTED PER NEUTRON-PRODUCING REACTION

\mathbf{E}_{γ} ,	Mev
-------------------------	-----

4.25	4.75	5.25	5.75	6.25	6.75	7.5	8.5
.0900	.1100	.1000	.0900	. 11 9 0 0	.0800	.1500	. 44nu
			.080u		.0600	.1200	3300
			, 0 Z 0 3	000 B	, U + U U	* 11 0 11 11	0600
.ប្ទេស្ស	•0800	•0 0 0	.u40J	. ეპეე	.0100	0	Ü
	•05uju	•020U	. 005j	n .	Ū	Ü	Ü
.0100	Û	0	J	υ	0	Ù	J
U	Ú	Ũ	U	Ú	9	Û	Ú
Ü	U	0	Ü	0	ū	0	ð
G	U	Ų	Ú	0	Ü	υ	9
0	Ű	Û	u	()	0	Ú	U
Ü	Ú	0	Ü	ti	0	0	Ü
0	Ü	Ú	9	0	0	0	Ü
Û	U	0	ð	0	0	0	1)
0	U	0	Ú	Ō	0	9	U
		4.25 4.75 .0900 .1100 .0900 .1000 .0900 .0900 .0900 .0800 .0600 .0500	4.25 4.75 5.25 .0900 .1100 .1000 .0900 .1000 .6900 .9900 .9900 .9800 .0900 .0800 .0600 .0600 .0500 .0200	4.25 4.75 5.25 5.75 .0900 .1100 .1000 .0900 .0900 .0900 .0900 .0900 .0800 .0800 .0700 .0800 .0400 .0500 .0500 .0500 .0500 .0500	4.25 4.75 5.25 5.75 6.25 .0900 .1100 .1000 .0900 .0900 .0900 .0900 .0900 .0900 .0800 .0700 .0900 .080	4.25 4.75 5.25 5.75 6.25 6.75 .0900 .1100 .1000 .0900 .0900 .0800 .0900 .1000 .6900 .0800 .0700 .0600 .0900 .1900 .0800 .0700 .0600 .0900 .0800 .0600 .0400 .0300 .0100 .0600 .0500 .0200 .050	4.25 4.75 5.25 5.75 6.25 6.75 7.5 .0900 .1100 .1000 .0900 .0800 .1500 .0900 .1200 .0900 .0800 .1200 .0900 .0800 .0400 .0400 .0600 .0900 .0800 .0400 .0400 .0600 .0900 .0800 .0400 .0400 .0400 .0500 .

TABLE 10 — CHROMIUM – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

Ε _γ , Mev						
0.5	1.5	2.5	4.0	6.0	8.0	9.716
.8500	.4100	,2100	.1200	,2300	.3900	.0640

TABLE 11 — CHROMIUM – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

	10.5	
	8.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
:	5.5	$\begin{array}{c} \bullet \bullet$
	4.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.75	
Λe	3.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E_{γ} , Mev	2.75	こうしょう こうしょう こうしょう ちょう しょう しょう しょう しゅうりゅう しゅうしょ こうしょ かんどう しゅうしょ しゅう
	2.25	
	1.75	こののののでは、「「「「」」」。 「」」。 「」」。 「」」。 「」」。 「」」。 「」」。
	1.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.75	
	0.25	・ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E, Mev	$\begin{array}{c} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $

TABLE 11 — CHROMIUM (CONTINUED)

TABLE 12 — IRON – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

\mathbf{E}_{γ} , Mev	
.38	.7500
1.6	.6000
2.6	.2700
3.7	.2300
6.0	.2500
7.63	.3800
9.3	.0210

TABLE 13 — IRON – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

					Б	Mev				
E, Mev	.85	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
.8100UE	20 20 20 20	44	3200	1360	V40	₩ C		9	2	၁၁
	S 3	440%	4 0	0 a	्र त त त	0.00 c		10 c	0.70	၁ 0
47700E 0	0000.	200	9	90	4 (4)	90	14		101	د د ا س ر
0 0000000000000000000000000000000000000	9 40	30.0	Or ⊃ Or Or	950	200	0.00 0.000 0.000 0.000	200	U W	2 2	700 900
270001	10 C	4 3	31 C	500	10 to	100 C	V 4		(N ()	0 0
15000E 0		1 H	Š	80	3 4. C ⊃	30	75	4	1 (A))) ()
0 100000	D 4	0.0	2 2	S C	4 4 4 7	500	22	C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22	90
0 370068	, d	20) OV	2	4	4	99	. 40 . 60	23) D
0.0000000000000000000000000000000000000	• • • • • •	o s	ຸດ	4 0 10 10	4 K	4 M	6 8	3 K	N +	3
. 5100cm	4) (C) (J)(C)	3 3	9 4	300	310	4.00	100	4) 7
THOUGE O	٠ د د	60 1	4 4	4 6	97	O 8	4 6	19	3	7
	, 4 , 4 , 4	0 0 0	0 O	3 CO	700	00	いる	0	93	פכ
0 300026	0.0	S.	7.0	323	S I	75	10	0	9	
.63000m	330	യ സ ⊃ ⊃	7 c	1,00	カカク	04 ○£0	9	25	> =	3 3
0 90000°	100 100 100	20.	\$ 4	760	4 4	₩	3 5	. .	. 5))
0 M00007.	, v.	2 Q	ה ככ⊂	200	0 4	74	> =	<i>3</i> c))
15000E U	2.	₹.	る な 第	Š	50 1	•	C	: 	כה	· •
.91000E 0	.120	⊋	7	ر 10	N N	0	-	0	ɔ	

TABLE 13 — IRON (CONTINUED)

	9.5	000000000000000000000000000000000000000	>
į	8.5		>
	7.5	000000000000000000000000000000000000000	>
	6.5		>
Λ	5.5	o e o e o o o o o o o o o o o o o o o o	0
\mathbf{E}_{γ} , Mev	4.5	o ¬¬ o o o o o o o o o o o o o o o o o	ɔ
	3.5	004444 000000 000000 00000000000000000	>
	2.5	4444 W W W 40	>
	1.5	######################################	9
	.85	$\begin{array}{c} 4444 \\ 45 \\ 50 \\ 50 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 6$)
	E, Mev	$\begin{array}{c} \bullet_{4}\alpha & \circ \circ \circ_{4}\alpha & \circ \circ \circ_{4}\alpha & \circ \circ_{4}\alpha & \bullet_{4}\alpha & \bullet_{4$	ていばつ ひりひ

TABLE 14 — NICKEL - NUMBER OF GAMMA RAYS EMITTED PER ABSORPTION

					7	\mathbf{E}_{γ} , Mev					
E, Mev	0.50	1.5	2.5	4.0	5.820	6.580	6.839	7.528	7.817	8.532	9.0
01705 0	5	70	9	00	0	00	•	8	0	0	0
. 403808 04 . 002808 04		000	9000	9000	8	1000	9000	44	000	41	000
1080E	808	100		30		90	30	90	9 6		5 0
62820E U	20	10	00	00	00	00	00	00	00	00	0
OKTOE C	800	200	5 6	4	0	00	ರ ! 0	0	00	00	0
4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 T D		2 4	2 4	d +	0 0	9	0	50	200	0
36406	200	300	9) H	* 4	100	1 N 7	100) 		> (4
0 300660	173	076	7	7	7	60	12	70	13	2	•
7900E 0	5	20	17	14	2	~	T T	26	0	73	~
2 80 8 T	4	23	2	2	9	t.	2	\$	73	3	æ
7830E#0	00	00	9	0	2	4	48	ŝ	2	4	351

TABLE 15 — NIÇKEL – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

0.000000000000000000000000000000000000	$\mathbf{E}_{\gamma^{\prime}}$ Mev		
		0.5	

TABLE 16 — ZIRCONIUM – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE AND PER NEUTRON-PRODUCING REACTION

(16a) Number of Gamma Rays Emitted per Capture

		\mathbf{E}_{γ} , Me	ev	
0.75	1.5	3.5	<u>6.0</u>	7.5
1.3	0.2	1.13	0.35	0 04

(16b) Number of Gamma Rays Emitted per Neutron-Producing Reaction

			\mathbf{E}_{γ} , M	ev		
E, Mev	1.0	2.0	3.0	4.0	5.0	6.0
18.0	.39	.32	.25	.19	.10	.03
10.9	.50	.38	.31	.31	.19	.10
8.51	.53	.38	.32	.32	.21	.09
6.63	.58	.40	.30	.23	.12	ı
5.16	.67	.42	.29	.12	0	1
4.02	.80	.44	.15	0	1	- 1
3.13	1.0	.50	0	1	1	- 1
2.44	1.0	.30	1]	- 1	
1.90	1.0	0			1	
1.48	1.0	1	1			
1.15	1.0		- 1	1	l	- 1
0.90	0	†	•	¥	ŧ	. ♦

TABLE 17 — CADMIUM – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	8,0000	0100
	5.5000	1700
	3.5000	7300
fev	2.5000	0096
\mathbf{E}_{γ} , Mev	1.4000	.0200
	.6510	1900
	.5580	. 8860 . 8810
	.5000	3500
	E, MeV	2,000065 01 1,000005-09

TABLE 18 — SAMARIUM – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

				E_{γ} , Mev				
E, Mev	.3340	.4390	. 6500	1.3000	2.2000	3.5000	5.7000	7.2000
2,00000 = 01 ,8200 1,00000 = 00 ,8200	9200	5400	4500 1,5000	1,5000	1,1600 1,1000	4500	0500 0500	. 1100

TABLE 19 — NATURAL TUNGSTEN – NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

25 25 280	0.75 1.25
25 1.75 2.25 280 ,3950 ,3300	1.25 1.75

TABLE 20 --- NATURAL TUNGSTEN - NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

						\mathbf{E}_{γ} , Mev					
E, Mev	0.25	1.00	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75
3000ce.	19 5 7	•	-	901	0	50	30	20	10	ć	•
4 40000 CT	₩	2,2000	4. 80.04 0.00	0000	2004 2000 2000	0000	0400	, , , , , , ,	000	0000	0000
	200 4	•	4	v	o, o	4	20	90	30	40	20
900029	CVI	٠.	\Rightarrow	0	%	180	40	70	4	2	
16000=	O	.Т.	S	œ	Œ	80	40	0	0	Q	0
.0200E	3	٠.	ø	F)	ס	0	0	0	0	0	0
13000	00	۲.	Ò	30	3	0	0	0	0	0	0
44000E	N	ੑ੶	•	.	O)	j	0	0	0	0	0
300000	CV.	· •	N.	0	د :	0	0	0	0	0	O
48000	S.	000 4	O	0	Þ	0	3	0	0	0	0
15000	ഥ	0002.	چ	ာ	ɔ	0	0	0	0	0	0
300000°	1,8000	1000	ت	.	: ɔ	ઝ	၁	0	0	C	0
0		0	a	3	:o	0	c	0	0	0	0
00002.	0	ت	Э	'	5	0	0	0	0	0	0

TABLE 21 — TUNGSTEN-182 - NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	6,6000	0011.
	5.6000	10102
	5.2500	1635
	4.6000	C198
	3.8000	1840
\mathbf{E}_{γ} , Mev	3.2500	2100
	2.7500	2600
	2.2500	3300
	1,7500	3950
	1.2500	4880
	.7500	9569
	.2500	9000

TABLE 22 - TUNGSTEN-183 - NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	6,6000	4/0.
	5.6000	Э
	5.2500	4090
	4.6000	CAZU,
	3.8000	.2250
\mathbf{E}_{γ} , Mev	3.2500	2910
Ey,	2.7500	3600
	2.2500	4570
	1.7500	5470
	1.2500	, 592 _U
	.7500	9340
	.2500	8300

TABLE 23 - TUNGSTEN-184 - NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	6,6000	1,41
	5,6000	9/150
	5,2500	U434
	4.6000	1628
	3.8000	1640
$\mathbf{E}_{\gamma},$ Mev	3.2500	2620
$\mathbf{E}_{\gamma},$	2.7500	2516
	2.2500	332 ₁
	1.7500	3470
	1,2500	431.0
	.7500	656 J
	.2500	بگاڻ.

TABLE 24 — TUNGSTEN-186 — NUMBER OF GAMMA RAYS EMITTED PER CAPTURE

	6.6000	CT + 0 .
	5.6000	ນິວດ.
	5.2500	0530
	4.6000	1220
	3.8000	1720
\mathbf{E}_{γ} , Mev	3.2500	1628
\mathbf{E}_{γ} ,	2.7500	2616
	2.2500	2550
	1.7500	3050
	1.2500	33,00
	.7500	æ. 4.
	.2500	463g

TABLE 25 --- URANIUM-235 -- NUMBER OF NONFISSION GAMMA RAYS EMITTED PER ABSORPTION

	6.4200	0000	0000	1200	5040	. 043	.0085	1024	11021	=
	5.2440	ם מים מי	0000	. 3015	0000	0000	1000.	1100.	4 3 0 1 5	•
	4.7430	.0000	0000.	0024	0040	0046	96000	.0026	.0024	•
	4.2430	0000	.0001	0.048	008V	4600	. 0190	0054	0049	>
	3.7420	0000	2 TO	00.00	1172	1152	4000	9806	0.000	•
	3.2400	0000	2000	0125	1283	1250	0	1141	1125	•
E., Mev	2.7930	1000	0003	1174	1394	1349	200	0197	0174	,
	2.3920	1000	, 1047 1047	- 246 - 536	6,91	1573	1478	1325	0686	
	1.9900	0001	0100	5540	0790	1954	272	0490	1010	
	1.5590	5000	1176	1420	1730	12/0	1270	1,0864	30/114	
	1,1020	C (1, 0, 1)	0368	. 29 4 C	3571	62112	2620	1780	3	
	9000	0.14	1661	. 484°.	. 962	2 7	7:60	4 4 4 0 4 4 0 4 4	2	
	.0894	2034	24211	1,0000	2.50	4 1 4 8 8	1.7200	1.1700		
	E, Mev	1.00000= 01	4 00000 00	1.00000= 10	1.50000=-62	7. 11 11 10 10 = 11 6	4.60000=-60	1.000000100	3.70000=-00	

TABLE 26 — URANIUM-238 – NUMBER OF NONFISSION GAMMA RAYS EMITTED PER ABSORPTION

					E, Mev				
E, Mev	.2500	.7500	1.2500	1,7500	2.2500	2.7500	3.2500	3.7500	4.5000
2,00000= 01	40.	110	7 8 8 9 4	<000°	5000	4000	0000	0	1000
00 100000	4 :	.4160	8906.	0054	.0031	950"	2000	000	0007
00 -00000	606	3,01	0/20	0.270	01.23	1144	0008	0100	9000.
000000000000000000000000000000000000000	12/C	ומאן.	0.00	5040.	9480.	. 1288	. 11015	.0032	11056
7	0201	10:0	683	0,540	0301	0.350	.0019	0040	0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	() () () () () () () () () ()	3,000	3 C	1900	.1070	.1240	.0067	.0140	245
7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	200	10.24	0.21.0	4020	.2300	22700	.0140	0300	. u53u
		1.7.00	esas.	0.146.	.3070	3600	.0190	00+0	070
0./"0"0"-08	1)	0	0-1	0-	0				

TABLE 27 — TOTAL GAMMA ENERGY RELEASE RATE AND INTEGRAL, 0 TO 10 SECONDS

t, sec	Mev/sec-fission	Integral, Mev/fission
0-5.0(-8)	1.48(+8)(average)	7.394
5.0(-8) 1.0(-7) 2.0(-7)	3.51(+6)(instantaneous) 2.15(+6)(instantaneous) 8.93(+5)(instantaneous)	
4.0(-7) 6.0(-7) 8.0(-7)	2.72(+5) 1.02(+5) 4.26(+4)	0.421
1.0(-6) 6.0(-5)	1.95(+4) 6.20(+2)	$\left.\begin{array}{c} \\ \\ \\ \end{array}\right\}$ 0.102
8.0(-5) 1.0(-4) 1.5(-4) 2.0(-4)	5.14(+2) 3.60(+2) 1.77(+2) 8.99(+1)	
3.0(-4) 4.0(-4) 6.0(-4) 8.0(-4)	2.66(+1) 1.15(+1) 3.94(+0) 2.20(+0)	0.0478
1.0(-3) 1.5(-3) 2.0(-3) 4.0(-3) 8.0(-3) 1.0(-2) 2.0(-2) 4.0(-2) 8.0(-2)	1.58(+0) 1.21(+0) 1.12(+0) 9.91(-1) 8.68(-1) 8.06(-1) 7.60(-1) 7.06(-1) 6.66(-1)	0.0716
1.0(-1) 2.0(-1) 4.0(-1) 8.0(-1)	6.50(-1) 6.05(-1) 5.11(-1) 4.12(-1)	0.433
1.0(+0) 1.5(+0) 2.0(+0) 3.0(+0) 4.0(+0) 5.5(+0) 1.0(+1)	3.78(-1) 2.98(-1) 2.47(-1) 1.89(-1) 1.54(-1) 1.21(-1) 7.22(-2)	1.307

TABLE 28 — SPECTRUM OF THE PROMPT (0 TO 5 \times 10^{-8} SECOND) GAMMAS FROM U^{235} FISSION

Energy, Mev	Mev/fission, $0 \text{ to } 5 \times 10^{-8} \text{ sec}$	$\overline{\mathbf{E}} = \sqrt{\mathbf{E_1}\mathbf{E_2}}$	Photons/fission, at \overline{E}
0.02-0.4	0.710	0.08944	7.94
0.4 - 0.9	1.950	0.6000	3.25
0.9 - 1.35	1.327	1.102	1.204
1.35-1.8	0.912	1.559	0.585
1.8 -2.2	0.659	1.990	0.331
2.2 -2.6	0.526	2.392	0.220
2.6 - 3.0	0.372	2.793	0.133
3.0 -3.5	0.310	3.240	0.0957
3.5 -4.0	0.218	3.742	0.0583
4.0 -4.5	0.155	4.243	0.0365
4.5 -5.0	0.089	4.743	0.0188
5.0 - 5.5	0.061	5.244	0.0116
5.5 -7.5	0.105	6.423	0.0163
Total	7.394		

TABLE 29 — GAMMA ENERGY RELEASE, 0 TO 1 SECOND AFTER FISSION

Time Band, sec	Mev/fission
$0-5.0 \times 10^{-8}$	7.394
5.0(-8)-1.0(-6)	0.421
1.0(-6)-6.0(-5)	0.102
6.0(-5)-1.0(-3)	0.0478
1.0(-3)-0.1	0.0716
0.1-1.0	0.4332
Total	8.470

TABLE 30 — PHOTONS PER SECOND PER FISSION AS A

						
	.020	.400	.900	1.350	1.800	2
	.400	.900	1.350	1,800	2.200	2
Seconds						
Beconus	.089	.600	1.102	1.559	1.990	2.
						i
1.0000E 00	1.600E=01	1.200E=01	7,200E-02	3.400E-02	2.500E-02	8.5
1.5000E 00	1.300E-01	9.60UE=02	5.300E-02	2.700E-02	1,800E-02	6.2
5.0000E 00	1.000E-01	8.100E-02	4,100E-02	2.300E=02	1.400E=02	7.6
3.0000E 80	7.300E-02	6.100E-02	2.930E-02	1.700E=02	1.100E=02	6,7
4.0000E 90	5.500F-02	5.000E=02	2.3005-02	1.400E=02	8.500E=03	5.4
5.00aue do	3.890E-02	3.700E-J2	1,600E-02	1.800E#82	6.000E=03	4.6
9.0000E 00	2.400E-02	2.690E=92	1,1305-02	7.1005-03	4.200E-03	3.4
1.3000E 01	1.7005-02	1.900E-02	7.600F-03	5,200E=03	3.000E=03	2.4
1.9000E 01	1,100E-02	1.300E=02	5.300E-03	3,700E+83	2.200E-03	1.7
2.8000E 01	8.800E-03	8.600E=33	3,8002-03	2.600E=03	1.500E-03	1.1
4.100UE 01	5.000E-03	5.900E=03	2,7J0E-03	1.800E-03	1.000E=03	8.0
5.0000E 1	3,300 = -03	3.900E=03	1,900E-03	1,200E-03	6.700E=04	5.2
8.8000E 01	2.1605-03	2.610E-03	1,300E-03	8.500E=04	4.400E-04	3.5
1.2900E 12	1.3005-03	1.730E-03	9.600E-04	5.700E+84	2.900E=04	2.3
1.8900E /2	8.500E-04	1.2005-03	•	3.830E=04	1.900E-04	1.5
2.770GE 32		7.700E=04	4.8005-04	2.500E=94	1.300F-04	1.0
4.0600E 02	· · - .	5.200E=34	3.400E-04	1.700E+04	8.006E=05	7.0
5.9500E 12	2.900E-04	3.400E=04	2.300F-04	1.130F+04	5.2005-05	4.2
8.7000E #2	2.300E-04	2.3005-04	1,5305-04	7,590E#05	3.400E=05	2.8
1.2800E 3	1.700E-04	1.590E-04	9.200E-05	4.600E=05	2.20rE-05	1.7
1.8700E 33	1.200E-04	1.000E-04	5.8005-05	3,100E-05	1.300E-05	1.1
2.7500E 13	8.300E-05	6.600E=05	3,000E-05	1.800E-85	8.20nE=06	6.5
4.0300E U3	4.9505-05	4.590E-05	1.7005-05	1,300E-05	5.000E-06	4.0
5.9000E 03	3.000F-05	2.900E-05	6.9U0E-06	7.670E=86	3.200E-06	2.5
8.6400E 03	1.700E-05	1.900E-05	4.700E-06	4.900E-06	2,100E-06	1.4
1.2700E 64	1.100E-05	1.200E=05	2.400E-06	2.700E=06	1.300E-06	6.8
1.7400E 24	7.800E-06	8.800E=06	1,600E-06	1.700E=06	9,60nE-07	4.2
3.6500E 04	3.1005-06	3.800E=06	5.600F-07	5.600E=07	4.2005-07	1.3

^{*}These data, as well as the spectra and intensities for earlier times $(10^{-16})^{-16}$ generator program written for the ATHENA system.

FUNCTION OF ENERGY GROUP AND TIME AFTER FISSION*

E1

E2 EG, Mev 200 3,000 3,500 4.000 2,600 4.500 5,000 4.000 600 3,000 3,500 4.500 5,000 5.500 392 2,793 3.240 3.742 4,243 4.743 5.244 00E-03 7.500E-03 6.300F-03 4.600E-03 3.700E-03 2.100E-05 9.100E-04 00E-03 6.500F-03 5.500F-03 4.000E-03 2.700F+03 1.500E-03 6.000E-04 00E=03 5,800E=03 4.800E=03 3.600E=03 2.100E=03 1.200E-03 5.600E-04 10E-03 4,800E-03 3.900E-03 2,980E-03 1.500E-03 8.700E-04 4.200E-04 00E+03 4.000E-03 3.400E+03 2.400E=03 1.200E#03 6.800E=04 3.400E=04 00E-03 3.200E-03 2.600E-03 1.800E-03 8.700E-04 4.800F-04 2.400E-04 00E-03 2.300E-03 1.800E-03 1.300E-03 6.1006=04 3.400E=04 1.700E+04 00F-03 1.70UF-03 1.3U0F-03 9.9U0E-04 4.400E#04 2.400E-04 1.200E-04 90E-03 1.200E-03 9.400E-04 7.000E-04 3.200E#04 1.700E-04 8.40UE-05 00E=03 8.200E=04 6.100E=04 4.600E-04 2.100Es04 1.100E-04 5.400E-05 00E+04 5,800E+04 4.200E+04 3.100E+04 1.500E#04 7.500E-05 3.600E-05 00E=04 3.700E=04 2.700E=04 2.000E=04 1.000E=04 4.700E-05 2.300E-05 00F=04 2.4NUE=04 1.7U0E=04 1.2NUE=U4 0.7UUE=05 2.900E-05 1.400E-05 00E-04 1.500E-04 1.000E-04 7.600E-05 4.300E = 05 1.800g-05 8.300E-06 90E-04 9.000E-05 6.000F-05 4.500E-05 2.500E=05 1.0005-05 4.400E-06 00E=04 5.300E=05 3.500E=05 2.70UE=05 1.50UE=05 5.200E-06 2.300E-06 105-05 3.3406-05 2.1006-05 1.600E-05 6.200E+06 2.800E-06 1.200E+06 1.300E-06 4.600E-07 00E-05 1.200E-05 6.800E-06 5.000E-06 1.700E-06 5.400E-07 1.800E-07 2.000E+07 4.900E+08 00E-05 3.400E-06 2.000E-06 1.400E-06 2.100E-07 6.400E-08 1.100E-08 10E-06 1.700E-06 9.600E-07 7.100E-07 4.500E=08 1.300E-08 1.000E-09 |DOE=06 8.309E=07 4.700E=07 3.400E=07 6.000E=09 2.000E-09 1.100E-10 2.400E-10 1.200E-11 190E-36 1.3a0E-a7 7.800E-a6 5.780E-98 6.000E-11 2.200E-11 1.400E-12 00E=07 4.800E-08 2.800E+08 2.100E=08 7.500E=12 2.000E-12 1.100E-13

o 1.0 second), are included as internal data in the VANGEN source-

00E-17 2.500E-08 1.400E-08 1.000E-08 1.300E-12

NOE-07 4.500E-09 2.200E+09 1.600E-09 1.500E-14

3.300E=13 2.200E=14

3.600E-15 3.100E-16

TABLE 31 — INTEGRATED GAMMA OUTPUT, MEV/FISSION, IN 12 GROUPS AND 3 TIME INTERVALS FROM 1.0 SECOND TO INFINITY

		Tin	ne Interval, sec	2	
Group	E, Mev	1.0 to 3.64×10^4	$\frac{3.64 \times 10^4}{\text{to } 1.0 \times 10^8}$	1.0×10^{8} to ∞	Total, $1.0 \text{ to } \infty$
1 2 3 4 5	0.089 0.600 1.102 1.559 1.990 2.392	1.77(-1) 1.25(+0) 1.07(+0) 9.29(-1) 6.31(-1) 5.53(-1)	3.42(-2) 4.04(-1) 5.15(-2) 6.24(-2) 1.53(-1) 1.96(-2)	5.90(-3) 2.38(-1) 2.09(-2) 1.25(-3) 1.01(-1) 2.20(-4)	0.217 1.89 1.12 0.993 0.885 0.573
7 8 9 10 11	2.793 3.240 3.742 4.243 4.743 5.244	3.61(-1) 3.05(-1) 2.59(-1) 1.41(-1) 7.71(-2) 4.01(-2)	3.50(-4) 1.70(-4) 1.50(-4) 0.0 0.0 0.0	0. 0. 0. 0. 0.	0.361 0.305 0.259 0.141 0.0771 0.0401
Total* Total† Total Fig	ssion Gamı	5.79	0.73	0.35	6.87 8.47 15.34

^{*0.02-5.5} Mev.

^{†0.02-7.5} Mev, 0-1.0 sec.

TABLE 32 — URANIUM-235 – NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

4.50 5.50 6.50	00000000000000000000000000000000000000	000
3.75	00000000000000000000000000000000000000	000
3.25	$\begin{array}{c} \bullet \bullet$	000
2.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000
E_{γ} , Mev 2.25	$\begin{array}{c} \bullet \bullet$	0 0 0 1 1 1 0
1.75	$\begin{array}{c} \mathbf{u}_{1} + \mathbf{u}_{1} + \mathbf{u}_{2} + \mathbf{u}_{1} + \mathbf{u}_{2} + \mathbf{u}_{3} + \mathbf{u}_{4} + \mathbf{u}_{3} + \mathbf{u}_{4} + \mathbf{u}_{3} + \mathbf{u}_{4} + \mathbf{u}$	9 9 6
1.25	$\begin{array}{c} +4444444\\ +666646\\ +666$	4 4 4 4 4 4 4
0.75	$\begin{array}{c} \mathbf{d} \cdot \mathbf{d} \\ $	0.40 0.40 0.40
0.25	$\begin{array}{c} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$	000 000 000 000 000
Е, Меч	$\begin{array}{c} 44444444444444444446000000000000000000$	0 HO 0 10 10 10 10 10 10 10 10 10 10 10 10 1

TABL 3 32 — URANIUM-235 (CONTINUED)

# # # # # # # # # # # # # # # # # # #	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.25	0.75	1.25	1.75	2,25	2.75	3.25	3.75	4.50	5.50	6.50
######################################	28.17. 33.441	بن	393	0.0	53	0.0	9)	9	9	0	0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17.20	_	4	3	\$	4	0	0	•	0	0	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	₹,	89	0	045	000	0	9	0	9	0	0
	20	_	7 i	0 1	2	0	Θ,	o	0	.	0	0
	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	.i	2 7	75	2	3	0	9	0	0	0	0
			77	S	000	3	0	0	0	0	ɔ	0
		•	Š	すり	025	ə	0	0	0	•	0	0
	20	•	07	223	014	3	0	3	0	•	0	0
4 34 W 2V W 4 V V 4 V 4 V 4 V 0 W 0 W 0 W 1 V 0 W 1 V 0 W 1 V V 0 W 1 V V V V V V V V V V V V V V V V V V	4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		50	215	900		0	0	0	0	a	d
40			96	203	001	3	0	9		9		
			46	101	,					. =	. c	
			2	7 7 1	• =	• =	· c	• =	• =	• =	,	> c
				3 S	• =	> =	> c	> c	> c	> t	> 0	> 0
		•	1	ر د د	> <	.	> 1	.	.	>	> (> (
V W H V W A V O M V O W O W O W O W O W O W O W O W O W O			2 1		> c	> :	5 (Э:	Э,	.	.	9
			<u>ک</u> د	ф.	>	>	D	Э	9	9	.	0
			œ N	0	-	ઝ	0	0	0	0	0	0
			7	겁	0	3	•	9	0	0	0	0
			88	40	0	9	0	9	0	0	0	a
			50	•		כרי		· a	· a	0	9	•
			4		3	- 23	0	· a	•		· c	
			R		•	· 3	•	0				•
			0		0	3	a	. =	•		· c	· c
			45	9))	• •		• •	• •	• •	• •
			99	· =		· 5	-		0	0		
			06			-			• •			• •
		•	20		9	· 5		0	0			0
			50		0	- 5	•	0				· c
		• .	60	a		, ,						• a
			20	6	9	· >	0	0	•	0		· c
		•	20	7	9	· "		· a			· c	
			Ħ	9	9	· ¬		0		0	0	• 0
			2	-	a	7	· c	· a	-			
		•		• c	9	- =	· c	0	• =	• =	· c	, c
			• =	> =	• =	· =	.	• =	,	• •	,	• •
			• •) 2	• =)	.	> =	•	> C	•	> C
			•	•	• c	> 5	3 C	> =	•	> <	> c	>
			> =	> c	• =	> =	-	> =	> c	> C) (> =
			•	> =		• =	•	• =	•	• <	•	9 6
			= =	.	3 C	9 5	-	> <) \$	>	> c	>
			• :	> :	• 6) :	> <	> 5	> <	•	> 0	•
			Э ;		> •	> :	> () ;	> (.	> (> (

TABLE 33 --- URANIUM-238 -- NUMBER OF GAMMA RAYS EMITTED PER NEUTRON-PRODUCING REACTION

	6.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\mathbf{E}_{\mathbf{y}^{2}}$ Mev	5.50	$\begin{array}{c} \bullet \bullet$	0
	4.50	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
	3.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
	3.25	$\begin{array}{c} \bullet \bullet$	0
	2.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2.25		17
	1.75	C C C C C C C C C C C C C C C C C C C	87
	1.25	$\begin{array}{c} \mathbf{d} + $	8
	0.75	$\begin{array}{c} \mathbf{u} \ $	2
	0.25	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	276
	E, Mev	444444444444666666777000000000000000000	440'00F U

TABLI; 33 — URANIUM-238 (CONTINUED)

Eγ, Mev	6.50	000000000000000000000000000000000000000
	5.50	000000000000000000000000000000000000000
	4.50	000000000000000000000000000000000000000
	3.75	
	3.25	000000000000000000000000000000000000000
	2.75	
	2.25	□ N N □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	1.75	 CCCCCCCCC CAN M4000 CMM ONN FM4 CAM OHN FMM
	1.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.75	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	0.25	$\begin{array}{c} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} d$
	E, Mev	

3. CONCLUSIONS

The tables presented in this report represent an adequate representation of the gamma spectra following neutron absorptions and inelastic-scattering events from the elements of interest in the tungsten nuclear rocket program. These include H, Be, C, O, Al, Cr, Fe, Ni, Zr, natural W and four W isotopes, U²³⁵ and U²³⁸.

The thermal capture gamma spectra are generally well-known. The assumption that the capture spectrum is independent of the neutron energy should be further investigated. The errors introduced in the gamma sources by neglecting gammas from charged particles, though probably small, should be investigated. Indeed, the charged particles themselves will, in general, deposit several Mev of energy locally at the point of interaction. Neglecting the latter contribution might be more important than neglecting the gammas produced in the charged-particle reactions.

The gamma spectra following inelastic scattering, for incident neutron energies below ~4 MeV, are reasonably accurate as they are based on experimental level-excitation cross sections. The resultant gamma spectra become less reliable in proportion to the extent to which the experimental data are supplemented by Hauser-Feshbach calculations.

In the intermediate neutron energy range (4 to 8 Mev) the inelastic gamma spectra are not uniformly reliable. There is a real need for good experimental data in this energy range, for almost all the elements considered in this report. The

only relatively complete data, those of Perkin, are of poor quality. The inelastic gamma spectra tabulated for this energy range are generally based (in varying degree) on statistical theory. The parameters used in the theoretical model are at times questionable, and the unreliability increases as the incident neutron energy increases.

The lack of good experimental data becomes more acute when one considers high (>8 Mev) incident neutron energies. There are practically no data except perhaps at $E_n = 14$ Mev. For $E_n > 8$ Mev the tabulated spectra are almost exclusively derived from statistical theory. In general, the spectral shapes are given more reliably than the absolute magnitudes. Fortunately the problems to be run in this program use a fission source, which has only one-half of one per cent of the source above 8 Mev.

As tungsten is an element of major importance in the program, it was decided to obtain capture spectra for several tungsten isotopes. The spectra are based on those for natural tungsten, modified for each isotope according to its binding energy and the gamma transitions appropriate to the particular isotope. It remains outside the scope of this report to obtain the inelastic gamma spectra for the various tungsten isotopes.

The gamma-ray spectra following neutron interactions with uranium-235 and uranium-238 were separated into two parts. The gammas associated with non-fission capture events were treated in the same manner as those of the other elements.

A very complete study was made of the fission gammas — both prompt and delayed (from 0 to 10 hr). These data are believed to be accurate to within the 15% uncertainty claimed for the prompt radiation, and as such should be adequate for most practical applications. However, some uncertainties remain which might be

investigated. One stems from the assumption of a constant gamma spectrum for the first second, which may not be entirely correct. For example, the average prompt photon energy implied by Table 28 is $\overline{E}=0.53$ Mev/photon, whereas Table 30 implies that \overline{E} varies from 0.85 Mev at 1 second to about 1.0 Mev over the range from 10 seconds to about 5 minutes, after which it decreases to 0.6 Mev at 10 hr.

Also, the extrapolations performed to extend Table 30 from about 5 hr to 10 hr, while introducing relatively small contributions to the total energy release, could be important in computing heating rates for long times after shutdown. Hence these extrapolations should be examined more carefully if problems in these time regions are contemplated.

In general, the accuracy of both the nonfission and the fission gamma spectra are believed to be adequate for the problems to be considered in the tungsten nuclear rocket program.

4. REFERENCES

- 1. Eisenman, B. and Nakache, F. R.: UNC-SAM: A FORTRAN Monte Carlo System for the Evaluation of Neutron or Gamma-Ray Transport in Three-Dimensional Geometry, UNC-5093 (Aug. 1964).
- 2. Goldstein, H.: "Fundamental Aspects of Reactor Shielding," Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959.
- 3. Perkin, J. L.: Nuclear Phys., 60:561 (1964).
- 4. Troubetzkoy, E. and Goldstein, H.: A Compilation of Information on Gamma-Ray Spectra Resulting from Thermal-Neutron Capture, ORNL-2904 (1960).
- 5. CINDA An Index to the Literature on Microscopic Neutron Data, published by Columbia University and ENEA Neutron Data Compilation Centre, May 1965.
- 6. Draper, J. E. and Bostrom, C. O.: Nuclear Phys., 47:108 (1963).
- 7. Krumbein, A. D.: Neutron Cross Sections for Beryllium, Vol. B, UNC-5014 (May 1962).
- 8. Troubetzkoy, E. S. et al.: Neutron Cross Sections, UNC-5099 (Dec. 1964).
- 9. Hughes, D. J. and Schwartz, R. B.: Neutron Cross Sections, 2nd Ed., BNL-325 (July 1958). Also Hughes, D. J. et. al.: Neutron Cross Sections, Supplement No. 1, BNL-325 (Jan. 1960).
- 10. Ray, J. H. et al.: Neutron Cross Sections, UNC-5139 (Nov. 1965).
- 11. Towle, J. H. and Gilboy, W. B.: Nuclear Phys, 39:300 (Dec. 1962).
- 12. Troubetzkoy, E. S.: Fast Neutron Cross Sections of Fe, Si, Al, and O, Vol. C, NDA 2111-3 (Nov. 1959).
- 13. Tralli, N. et al.: Neutron Cross Sections, UNC-5002 (Jan. 1962).
- 14. Thompson, W. E. and Engesser, F. C.: USNRDL-TR-861 (June 1965).
- 15. Van Patter, D. M. et al.: Phys Rev., 128:1246 (1962).
- 16. Montague, J. H. and Paul, E. B.: Nuclear Phys., 30:93 (1962).

- 17. Caldwell, R. L., Mills, W. R., Jr., and Hickman, J. B., Jr.: Nuclear Sci, and Eng., 8:173 (1960).
- 18. Broder, D. L., et al.: Atomnaia Energia, 16:103 (1964).
- 19. Heinrich, F. and Tanner, F.: Helv. Phys. Acta, 36(3):298 (1963).
- 20. Buckingham, B. R. S. et al.: AWRE 0-28/60 (1961).
- 21. Fleishman, M. R.: UNUCOR-634 (Mar. 1963).
- 22. Smither, R. K.: Phys. Rev., 124:183 (1961).
- 23. Groshev, L. V. et al.: Nuclear Phys., 43:669 (1963).
- 24. Groshev, L. V. et al.: "Atlas of γ -Ray Spectra from Radiative Capture of Thermal Neutrons," Atomisdat, Moscow, 1958.
- 25. Hamermesh, B.: Phys. Rev., 80:415 (1950).
- 26. Kinsey, B. B. and Bartholemew, G. A.: Can. J. Phys. 31:1051 (1953).
- 27. Kubitschek, H. E. and Dankoff, S. M.: Phys. Rev., 76:531 (1949).
- 28. Smith, A.: Reports to the AEC Nuclear Cross Section Advisory Group, p. 12, WASH-1031 (Feb. 1961).
- 29. Treado, P. A. and Chagnon, P. R.: Nuclear Phys., 34(3):623 (June 1962).
- 30. Peele, R. W. et al., in Pile Neutron Research Physics, p. 273, IAEA, Vienna (1962).
- 31. Bertini, H. W. et al.: Basic γ Data for ART Heat Deposition Calculations, ORNL-2113 (Oct. 1956).
- 32. Campion, P. S.: Can. J. Phys., 37:377 (1959).
- 33. Peele, R. W., Maienschein, F. C., and Love, T. A.: The Energy Spectrum of Prompt Gamma Rays Accompanying the Thermal Fission of U²³⁵, p. 45, ORNL-2609 (Feb. 15, 1958).
- 34. Maienschein, F. C. et al.: Characteristics of Fission Product Gamma Rays Emitted between 5×10^{-8} and 10^{-6} Second after Thermal Fission of U^{235} , p. 47, ORNL-2609 (1958).
- 35. Skliarevskii, V. V. et al.: Investigation of U²³⁵ Fission Gamma Rays in the Energy Region up to 250 key, J. Exp. Theor. Phys., 5:2 (Sept. 1957).
- 36. Roos, M.: Sources of Gamma Radiation in a Reactor Core, Nuclear Energy, Part B (Reactor Technology)I, 98 (1959).
- 37. Walton, R. B. et al.: Delayed Gamma Rays for Photofission of U^{238} , U^{235} , and Th^{232} , Phys. Rev. 134(4B):B824 (May 25, 1964).

- 38. Zigman, P. and Mackin, J.: Early Time Decay of Fission Product Mixtures II; Gamma-Energy Release and Ionization Rates Following Thermal Neutron Fission of U²³⁵, Health Phys. 5:79.
- 39. Watson, J. E., Jr.: Analysis of Calculated and Measured Fission Product Activities, BRL Report No. 1239 (Feb. 1964).
- 40. Landolt-Börnstein Tables, New Series, Vol. 1, "Energy Levels of Nuclei," Springer-Verlag, Berlin, 1961.
- 41. Cranberg, L.: Neutron Scattering by U^{235} , Pu^{239} , and U^{238} , LA-2177 (1959).
- 42. Cranberg, L and Levin, J. S.: Phys. Rev., 109:2063 (1958).
- 43. Batchelor, R. and Towle, J. H.: Proc. Phys. Soc. (London), 73:193 (1959).
- 44. Smith, A. B., Private Communication to H. Goldstein (1960).

DISTRIBUTION

MANDATORY

All Reports

Recipient	Address
Concerned NASA Lewis Research Center program manager (3 & reproducible)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Walter A. Paulson, MS 49-2
Concerned NASA Lewis Research Center contracting officer (1)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: John J. Fackler Contracting Officer, MS 54-1
Concerned NASA Lewis Research Center technical utilization office (1)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Technical Utilization Office, MS 3-16
NASA Headquarters technical information abstracting and dissemination facility (6 & reproducible)	NASA Scientific and Technical Information Facility Box 5700 Bethesda, Md. Attention: NASA Representative
Lewis Library (2)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Library
Lewis Technical Information Division (1)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Report Control Office

Reports with Nuclear Content

U. S. Atomic Energy Commission (3) Technical Reports Library Washington, D. C.

U. S. Atomic Energy Commission (3) **Technical Information Service Extension** P. O. Box 62 Oak Ridge, Tenn.

APPROPRIATE

Recipient

Recipient	Address
NASA Headquarters program office (2)	National Aeronautics and Space Administration Washington, D. C. 20546 Attention: NPO
Westinghouse Electric Corp. (1)	Westinghouse Electric Corp. Astronuclear Laboratory Box 10864 Pittsburgh, Pennsylvania 15236
General Dynamics Corp. (1)	General Dynamics Corp. General Atomic Division P. O. Box 608 San Diego, California 92112 Attention: John T. Iles
North American Aviation (1)	North American Aviation, Inc. Atomics International Division 8900 Desota Avenue Canoga Park, California
General Electric Co. (1)	General Electric Company Nuclear Materials & Propulsion Operations P. O. Box 15132 Evandale, Ohio 45215 Attention: E. B. Delson

Lewis Research Center staff members (1 copy to each)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Nuclear Rocket Technology Office, MS 54-1 Mr. Leroy V. Humble, MS 49-2 Mr. Samuel J. Kaufman, MS 49-2 Mr. Edward Lantz, MS 49-2 Mr. Irving M. Karp, MS 54-1 Mr. Leonard Soffer, MS 500-201 Mr. Millard L. Wohl, MS 49-2 Dr. John C. Liwosz, MS 54-1
Combustion Engineering, Inc. (1)	Combustion Engineering, Inc. Prospect Hill Road Windsor, Conn.
Babcock-Wilcox Research Center (1)	Babcock-Wilcox Research Center P. O. Box 835 Alliance, Ohio Attention: Mr. Blazer
Aerojet-General Nucleonics (1)	Aerojet-General Nucleonics P. O. Box 77 San Ramon, California 94583 Attention: R. W. Durante
United Aircraft Corp. (1)	United Aircraft Corp. Pratt & Whitney Aircraft Division 400 Main Street E. Hartford, Conn. Attention: W. J. Leuckel
Lewis Office of Reliability and Quality Assurance (1)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention: Office of Reliability

Ames Research Center (1)

Flight Research Center (1)

and Quality Assurance
NASA Ames Research Center
Moffett Field, California 94035
Attention: Library

NASA Flight Research Center P. O. Box 273 Edwards, California 93523

Attention: Library

Goddard Space Flight Center (1) NASA Goddard

NASA Goddard Space Flight Center (1)

Greenbelt, Md. 20771 Attention: Library

Jet Propulsion Laboratory (1)

Jet Propulsion Laboratory

4800 Oak Grove Dr.

Pasadena, California 91103

Attention: Library

Langley Research Center (1)

NASA Langley Research Center

Langley Station

Hampton, Va. 23365 Attention: Library

Marshall Space Flight Center (1)

NASA Marshall Space Flight Center

Huntsville, Alabama 35812

Attention: Library

Western Operations (1)

NASA Western Operations

150 Pico Blvd.

Santa Monica, California 90406

Attention: Library